Power Prior Elicitation in Bayesian Quantile Regression
نویسندگان
چکیده
We address a quantile dependent prior for Bayesian quantile regression. We extend the idea of the power prior distribution in Bayesian quantile regression by employing the likelihood function that is based on a location-scale mixture representation of the asymmetric Laplace distribution. The propriety of the power prior is one of the critical issues in Bayesian analysis. Thus, we discuss the propriety of the power prior in Bayesian quantile regression. The methods are illustrated with both simulation and real data.
منابع مشابه
Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملObjective Bayesian analysis on the quantile regression
The dissertation consists of two distinct but related research projects. First of all, we study the Bayesian analysis on the two-piece location-scale models, which contain several well-known subdistributions, such as the asymmetric Laplace distribution, the -skew normal distribution, and the skewed Student-t distribution. The use of two-piece location-scale models is an attractive method to mod...
متن کاملBayesian quantile regression using random B-spline series prior
A Bayesian method for simultaneous quantile regression on a real variable is considered. By monotone transformation, the response variable and the predictor variable are transformed into the unit interval. A representation of quantile function is given by a convex combination of two monotone increasing functions ξ1 and ξ2 not depending on the prediction variables. In a Bayesian approach, a prio...
متن کاملModel-based approaches to nonparametric Bayesian quantile regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...
متن کامل